Reproducible Science of Science at scale: pySciSci


Science of science (SciSci), a growing field at the boundary of sociology, network science, and computational social science, encompasses diverse interdisciplinary research programs that study the processes underlying science. The field has benefited greatly from access to massive digital databases containing the products of scientific discourse—including publications, journals, patents, books, conference proceedings, and grants. The subsequent proliferation of mathematical models and computational techniques for quantifying the dynamics of innovation and success in science has made it difficult to disentangle universal scientific processes from those dependent on specific databases, data-processing decisions, field practices, etc.. Here we present pySciSci, a freely available and easily adaptable package for the analysis of large-scale bibliometric data. The pySciSci package standardizes access to many of the most common datasets in SciSci and provides efficient implementations of common and advanced analytical techniques.

Quantitative Science Studies
Alexander J. Gates
Alexander J. Gates
Assistant Professor

I am a computational social scientist and network scientist with a passion for uncovering how interconnectedness shapes our lives.